Toys, Techniques, and Tools for Teaching Computer Science

Fran Trees
Drew University
Madison, NJ
Kinesthetic Learning Activities (KLA)

- A pedagogical tool involving physical movement by students.
 - Students are actively, physically engaged
 - This engagement supports some specific learning objective
And the research says…

- KLAs can be effective in practically any learning environment
- No single learning style fits everyone
 - Some students prefer information to be structured as facts about things
 - Some students prefer information to be based on relationships among things
 - Some students prefer a deductive reasoning approach (start with first principles)
 - Some students prefer an inductive reasoning approach (start with examples)
Moral of the story?
This presentation will include…

- A sharing of ideas for using "toys" in the classroom to support or introduce concepts in teaching computer science
- An introduction to some cool tools to support computer science learning
- A discussion of techniques that can be used in the classroom to support learning
Toys

Know the "WHY" supports some specific learning objective
The First Day (any CS course)

- **Algorithm Development**
 - Algorithm development answers the question “**How** can the program accomplish what must be done?”
 - The ability to identify and suggest generalized solutions to particular algorithmic problems can help students find underlying simplicity in difficult problems or, as often happens in computer science, reduce a new problem to one that already has been solved.

- **Object-Oriented Programming**
 - Learning object oriented design and programming is a challenging task for many beginning students.
 - While objects-first is effective in teaching key concepts of object-oriented programming, it does not go far enough in helping students learn problem solving skills.
Introduction to Algorithm Development

- Peanut and Butter Sandwich
 - Materials
 - one loaf of bread
 - one jar of peanut butter
 - one jar of jelly
 - one knife
 - one spoon
 - one fork
 - one plate
 - one paper towel
 - http://www.cs.duke.edu/courses(cps004games/fall06/classwork/01_pbj/index.html
Introduction to Algorithm Development

- Paper Airplane
 - One sheet of paper. Common notebook paper or stationery should work quite well.
 - The paper used must be rectangular in shape with straight, smooth edges and square (90°) corners.
 - A smooth, flat work surface.
 - OPTIONAL: One pair of scissors or paper shears.

- http://jdcard.com/engl3007/airplane.htm
Introduction to Algorithm Development

- Counting M&Ms
 - Materials
 - Bags of M&Ms
 - [http://www.cs.duke.edu/courses(cps004/spring01/classwork/comparing.html](http://www.cs.duke.edu/courses/cps004/spring01/classwork/comparing.html)
Introduction to Algorithm Development

- Replicate Drawing
 - Materials
 - Paper
 - Pencil
 - Line Drawing
 - http://www.cs.duke.edu/courses(cps004/spring01/classwork/picture/directions.html
Maps

- Class will be divided into 4 groups
- Materials needed (modify to fit your area):
 - 4 maps (for Northern New Jersey: 2 South Essex, 2 North Essex) to be used in Part I
 - 4 blank sheets for written street directions (Part I)
 - 4 blank maps: 2 South Essex, 2 North Essex (Part II)
 - 4 highlighters

Introduction of Classes/Objects

- Classes and Objects
 - Materials
 - Play-Doh
 - Cookie Cutter
 - Rolling pin
Introduction of Classes/Objects

- Role Play
 - Materials
 - Role Play Script
 - Actors

Introduction of Classes/Objects

- Object Diagram
Introduction of Classes/Objects and Inheritance

- Radios
Introducing Number Systems

- **Binary Basics**
Algorithm Demonstrations

- Binary Search
 - Materials
 - Phonebook (or dictionary)
Introduction to while loops
Also: $n \log n$ sorts and binary search

- Paper Folding
 - Folding a piece of paper in half results in a folded sheet twice as thick as the original sheet. Similarly, folding this doubled sheet results in a folded sheet four times as thick as the original sheet, and so on. If this process is continued, how many folds would be necessary to obtain a folded sheet whose thickness stretched from the earth to the sun? Assume that a single sheet of paper is .002 inches thick.
Algorithm Demonstration

- **Sorting**
 - **Materials**
 - Deck of Cards
 - or
 - Towers of Hanoi (Selection Sort)
 - or
 - word papers (Merge Sort)
 - or
 - people
 - or
 - building blocks

Algorithm Demonstrations

- Sorting
 - Transparencies
 - Animations
Introduction to Recursion

- Cat in the Hat Comes Back
 - Dr. Seuss

- Martin and the Dragon
 - David Touretzky's Common List: A Gentle Introduction to Symbolic Logic (Chapter 8)
 - http://www.cs.cmu.edu/~dst/LispBook/index.html
Computer Science Unplugged

- A collection of activities designed to teach the fundamentals of computer science without requiring a computer.
- And it's free!

- http://csunplugged.com/
01 - Binary Numbers
02 - Image Representation
03 - Text Compression
04 - Error Detection
05 - Information Theory
06 - Searching Algorithms
07 - Sorting Algorithms
08 - Sorting Networks
09 - Minimal Spanning Trees
10 - Routing and Deadlock

11 - Finite State Automata
12 - Programming Languages
13 - Graph Colouring
14 - Dominating Sets
15 - Steiner Trees
16 - Information Hiding
17 - Cryptographic Protocols
18 - Public Key Encryption
19 - Human Interface Design
20 - The Turing Test
Techniques for Teaching CS

Cool Ideas and Pedagogical Patterns
Techniques for Teaching Computer Science

- Cool Ideas
 - FAQs
 - Company Rules
 - Student Generated Quizzes
 - Golden Rule of Programming
 - Raffle Tickets
Techniques for Teaching Computer Science

- Pedagogical Patterns
 - Early Bird
 - Spiral
 - Consistent Metaphor
 - Toy Box
 - Tool Box
 - Lay of the Land
 - Fixer Upper
 - Larger Than Life
 - Student Design Sprint
 - Mistake
 - Test Tube
 - Fill in the Blanks
 - Gold Star
 - Grade it Again Sam

- http://pclc.pace.edu/~bergin/PedPat1.3.html
Techniques for Teaching Computer Science

- Other cool suggestions
 - Three Stars and a Wish
 - Move Around
 - Look but do not Touch
 - Listen
 - Crafted Questions
 - Learning Contract
 - Piece of Mind
Cool Tools
Jeliot 3 is a Program Visualization application. It visualizes how a Java program is interpreted. Method calls, variables, operation are displayed on a screen as the animation goes on, allowing the student to follow step by step the execution of a program.

Programs can be created from scratch or they can be modified from previously stored code examples. The Java program being animated does not need any kind of additional calls, all the visualization is automatically generated.

Jeliot 3 understands most of the Java constructs and it is able to animate them. Special effort is currently being addressed to animate object oriented features, such as inheritance.
import FroqITools.IOTools;

public class MyClass {
 public static void main() {
 System.out.println("Array 01");
 int[] a = new int[10];
 int[] b = {1, 2, 3, 4, 5, 6, 7, 8};
 listForward(a);
 listForward(b);
 listBackward(b);
 System.out.println(a); // prints something or
 }

 public static void listForward(int[] aList) {
 System.out.println("Array Printed Forward");
 for (int i = 0; i < aList.length; i++)
 System.out.println("\"t\" + i):
 System.out.println();
 }

 public static void listBackward(int[] tList) {
 System.out.println("Array Printed Backward");
 for (int x = tList.length - 1; x >= 0; x--)
 System.out.println("\"t\" + tList[x]);
 System.out.println();
 }
}
Java Visualizer

- Lightweight Java Visualizer.
 - Information on LJV is located here:
 - The java file for LJV is located here:
 - You also need graphVIZ another freeware located here:
int[] numbers = new int[4];
numbers[0] = 3;
numbers[3] = 11;
numbers[2] = -4;
numbers[1] = 0;
LJV.drawGraph(numbers);

String[] animals = new String[5];
animals[0] = "bird";
animals[3] = "horse";
animals[4] = animals[3].substring(1,3);
LJV.drawGraph(animals);
JavaBat

- JavaBat is a free site of live Java coding problems to build coding skill ([example problem](http://www.javabat.com/about.html)), created by [Nick Parlante](http://www.javabat.com/about.html) who is computer science lecturer at Stanford. The coding problems give immediate feedback, so it's an opportunity to practice and solidify understanding of the concepts.

- The problems could be used as homework, or for self-study practice, or in a lab, or as live lecture examples. The problems, all listed off the [JavaBat home](http://www.javabat.com/about.html), have low overhead: short problem statements (like an exam) and immediate feedback in the browser.

- http://www.javabat.com/about.html
The parameter weekday is true if it is a weekday, and the parameter vacation is true if we are on vacation. We sleep in if it is not a weekday or we’re on vacation. Return true if we sleep in.

sleepIn(false, false) → true
sleepIn(true, false) → false
sleepIn(false, true) → true

<table>
<thead>
<tr>
<th>Expected</th>
<th>This Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>sleepIn(false, false) → true</td>
<td>true</td>
</tr>
<tr>
<td>sleepIn(true, false) → false</td>
<td>false</td>
</tr>
<tr>
<td>sleepIn(false, true) → true</td>
<td>true</td>
</tr>
<tr>
<td>sleepIn(true, true) → true</td>
<td>true</td>
</tr>
</tbody>
</table>

next | chance

JavaBat > Warmup
done page

Code is saved so long as this session is active. Create an account to save code past this session.

...Save, Compile, Run
JavaBat

Warmup
Simple problems to get started (solutions avail)
- sleepIn
- monkeyTrouble
- sumDouble
- more

String1
Basic string problems -- no loops
- helloName
- makeAbba
- makeTags
- more

Logic
Little boolean logic puzzles -- if else && || !
- cigarParty
- dateFashion
- squirrelPlay
- more

String2
Medium String problems -- 1 loop
- doubleChar
- countHi
- catDog
- more

Array1
Basic array problems -- no loops
- firstLast6
- sameFirstLast
- makePi
- more

AP1
AP CS practice problems
- scoresIncreasing
- scores100
- scoresClump
- more

String3
Harder String problems -- 2 loops
- countYZ
- withoutString
- equalIsNot
- more

Array2
Medium array problems -- 1 loop
- countEvens
- bigDiff
- centeredAverage
- more

Array3
Harder array problems -- 2 loops, more complex logic
- maxSpan
- fix34
- fix45
- more

Recur1
Basic recursion problems
- factorial
- bunnyEars
- fibonacci
- more

Recur2
Harder recursion problems
- groupSum
- groupSum6
- groupNoAdj
- more

Copyright Nick Parlante 2006-07 - privacy
Introduction to Computer Science

- Alice
- Karel J. Robot
- Jeroo
- Greenfoot
- GridWorld
- Scratch
- Squeak
- Phrogram
- Lego Mindstorms
Alice

- Alice is an innovative 3D programming environment that makes it easy to create an animation for telling a story, playing an interactive game, or a video to share on the web.

- Alice is a **freely available** teaching tool designed to be a student's first exposure to object-oriented programming.

- www.alice.org
Karel J. Robot (Java)

- A Gentle Introduction to Object-Oriented Programming
Jeroo

- Jeroo is a tool that helps novices learn fundamental concepts of object-oriented programming, including:
 - Instantiating and using objects
 - Writing methods to extend behavior
 - Selecting and using fundamental control structures
- Jeroo engages students with:
 - Story telling
 - Animated execution
 - Simultaneous code highlighting
void main()
{
 Jeroo bobby = new Jeroo();
bobby.hop(3);
bobby.pick();
bobby.pick();
bobby.turn(RIGHT);
bobby.hop(2);
bobby.plant();
bobby.turn(LEFT);
bobby.hop();
}
Consider Greenfoot as a combination between a framework for creating two-dimensional grid assignments in Java and an integrated development environment (class browser, editor, compiler, execution, etc.) suitable for novice programmers.

While Greenfoot supports the full Java language, it is especially useful for programming exercises that have a visual element. In Greenfoot, object visualization and object interaction are the key elements.
Greenfoot
Greenfoot
import greenfoot.World;
import greenfoot.Actor;

public class Person extends Actor
{
 private static final int ST_ON_FLOOR = 0;
 private static final int ST_IN_LIFT = 1;

 private Floor originFloor;
 private int targetFloor;
 private int status;

 public Person()
 {
 this(null, null);
 }

 public Person(Floor floor, Building building)
 {
 setImage("person.gif");
 originFloor = floor;
 status = ST_ON_FLOOR;
 if (floor != null || building != null)
 {
 }
 }
GridWorld (Java)

- GridWorld is the case study for the 2008 AP CS exam (and beyond). GridWorld uses an engaging environment that allows students to create and test actors with a wide variety of behaviors.
public class BoxBug extends Bug {
 private int steps;
 private int sideLength;

 /**
 * Constructs a box bug that traces a square of a given side length
 * @param length the side length
 */
 public BoxBug(int length)
 {
 steps = 0;
 sideLength = length;
 }

 /**
 * Moves to the next location of the square.
 */
 public void act()
 {
 if (steps < sideLength && canMove())
 {
 move();
 steps++;
 }
 else
 {
 turn();
 turn()
 steps = 0;
 }
 }
}
public class CrabRunner
{
 public static void main(String[] args)
 {
 ActorWorld world = new ActorWorld();
 world.add(new Location(7, 5), new Rock());
 world.add(new Location(5, 4), new Rock());
 world.add(new Location(5, 7), new Rock());
 world.add(new Location(7, 3), new Rock());
 world.add(new Location(7, 8), new Flower());
 world.add(new Location(2, 2), new Flower());
 world.add(new Location(3, 5), new Flower());
 world.add(new Location(3, 8), new Flower());
 world.add(new Location(6, 5), new Bug());
 world.add(new Location(5, 3), new Bug());
 world.add(new Location(4, 5), new CrabCritter());
 world.add(new Location(6, 1), new CrabCritter());
 world.add(new Location(7, 4), new CrabCritter());
 world.show();
 }
}
Scratch

- Scratch is a new programming language that makes it easy to create your own interactive stories, animations, games, music, and art -- and share your creations on the web.

- Scratch is designed to help young people (ages 8 and up) develop 21st century learning skills. As they create Scratch projects, young people learn important mathematical and computational ideas, while also gaining a deeper understanding of the process of design.

- Scratch is available free of charge

- http://scratch.mit.edu/
Scratch
Squeak (Smalltalk-OO language)

- Squeak is a modern, open source, fully-featured implementation of the Smalltalk programming language and environment.

- Squeak is highly portable — even its virtual machine is written entirely in Smalltalk, making it easy to debug, analyze, and change.

- Squeak is the vehicle for a wide range of innovative projects from multimedia applications and educational platforms to commercial web development environments.

Squeak

The Quinto game
Phrogram

- Phrogram is a programming language and integrated development environment, or IDE, bearing some similarities to Visual Basic.

- A Phrogram program is a collection of nested code blocks. On the highest level is a *Program* block, and within this *Method* blocks and *Function* blocks are defined. Functions and Methods are both chunks of reusable code, available in the Program scope; Functions return values, while Methods may not. Data structures are defined within the Program scope. Variables must be declared and typed at the time of declaration.

- http://phrogram.com/
While True

// If the user presses a mouse button, see if it's on the // bird. If so, start dragging.
If MouseEvent = "ButtonDown" Then
 If Not Dragging Then
 // If we've just started dragging, turn Dragging on // and calculate where the mouse is relative to the // top left corner of the bird.
 Dragging = Bird.ContainsPoint (MouseX, MouseY)
 If Dragging Then
 OffsetX = MouseX - Bird.Left
 OffsetY = MouseY - Bird.Top
 End If
 End If
End If
Function ChangeColor (Tint As Integer) As Integer
// ChangeColor changes one color component randomly by -1, 0, or 1 but
// keeps it between 0 and 255.
 Tint = Tint + Random (-1, 1)
 Tint = Max (Tint, 0)
 Tint = Min (Tint, 255)
Return tint
End Function
Lego Mindstorms

- Kits are available from www.legoeducation.com. You can use java to program the
Others????
References (where links not provided)