Trees

Textbook: Chapter 5, Section 5.5
Tree traversals: Notes on Graphs and Trees by Cusack
Textbook: Chapter 13, Section 13.1

CSCE310: Data Structures and Algorithms
www.cse.unl.edu/~choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444
Free tree

A connected, acyclic, undirected graph \rightarrow Tree

A possibly disconnected, acyclic, undirected graph \rightarrow Forest

Let $G = (V, E)$ be an undirected graph. The following statements are equivalent.

1. G is a free tree.
2. Any two vertices in G are connected by a unique simple path.
3. G is connected, but if any edge is removed from E, the resulting graph is disconnected.
4. G is connected, and $|E| = |V| - 1$.
5. G is acyclic, and $|E| = |V| - 1$.
6. G is acyclic, but if any edge is added to E, the resulting graph contains a cycle.
(1) \rightarrow (2) \[
(1) G \text{ is a free tree (\equiv connected, acyclic, undirected graph)} \\
(2) \text{Any two vertices are connected by a unique simple path}
\]

G connected \rightarrow any two vertices are connected by at least one simple path, prove this path is unique by contradiction.

Consider u and v, two vertices linked by 2 simple paths p_1 and p_2.

Let w (resp. z) the vertex where p_1 & p_2 converge (resp. diverge).

Let p' (p'') the subpath of p_1 (p_2) from w to z through x (y).

p' and p'' share no vertices except their endpoints

The path obtained by concatenating p' and reverse of p'' is a cycle.

The tree is thus cyclic \Rightarrow Contradiction!

There can be at most one path between any two vertices.
(2) Any two vertices are connected by a unique simple path
(3) G is connected, but if any edge is removed from E, the resulting graph is disconnected

Let (u, v) be any edge in E

This edge is a path from u to v \Rightarrow it must be the unique simple path from u to v

Remove it, and G will be disconnected

Check textbook for: $(3) \rightarrow (4), (4) \rightarrow (5), (5) \rightarrow (6), \text{ and } (6) \rightarrow (1)$.
Rooted tree: is a free tree T with a root r (distinguished node)

Ancestor of a node x: A node y on the unique path from x to the root

Descendant of y: any node whose ancestor is y

Every node is descendant and ancestor of itself

Proper ancestor: If y is an ancestor of x and $y \neq x$

Proper descendant: If x is a descendant of y and $x \neq y$

Subtree rooted at x: subtree induced by descendants of x, rooted at x
Rooted tree (II)

Parent of x: y such that (y, x) is the last edge on path from r to x. Only, r has no parent.

Child of y: x such that (y, x) is the last edge on path from r to x

Siblings: Two nodes with same parents

Leaf, external node: a node with no children

Internal node: nonleaf node
Rooted tree (III)

Degree of x: number of children of x

Depth of x in T: length of path from r to x

Height of T: largest depth of any node x in T
Rooted tree (IV)

Ordered tree: Children of each node are ordered (1\(^{st}\) child, 2\(^{nd}\) child, etc.)

(a) and (b) are different if considered as *ordered* rooted trees
(a) and (b) are same if considered a rooted trees
Binary tree T \hspace{4cm} (recursive definition)

is a structure defined on a finite set of nodes that either

- contains no nodes, or

- is comprised of 3 disjoint sets of nodes
 1. a **root** node (**empty tree**, **null tree**, denoted Nil)
 2. a binary tree, called its **left subtree**
 3. a binary tree, called its **right subtree**
Binary tree T (II)

- If left subtree non empty, its root is the **left child** of root of T
- If right subtree non empty, its root is the **right child** of root of T
- If subtree is the null tree Nil, we say child is **absent, missing**
Binary tree T (III)

FALSE: Binary is an ordered tree in which each node has degree at most 2.

It matters to know the position of an only child: left or right?

(a) and (b) are the same tree
(a) and (b) are the same ordered tree
(a) and (b) are **not** the same binary tree
Positioning information
replace each missing child with a node with no children, drawn as a square

Result: full binary tree, each node \(\{ \) is either a leaf, or
has a degree 2, exactly

Order of children preserves position information
Positional tree \hspace{1cm} (generalize for \(k \) children)

- Children of a node are labeled with distinct positive integers.
- \(i^{th} \) child missing if no child is labeled with \(i \)

\textit{k-ary tree:} positional tree with children with labels \(> k \) are missing

\textit{Binary-tree:} is a \(k \)-ary tree with \(k = 2 \)

\textit{Complete \(k \)-ary tree:} \hspace{1cm} \begin{align*}
& \{ \text{all leaves have the same depth, and} \\
& \text{all internal nodes have degree } k \}
\end{align*}
Complete k-ary tree

- Number of \textbf{leaves} at depth h is
- The \textbf{height} of a k-ary complete tree with n leaves is ...
- The number of \textbf{internal} nodes is:
 \[1 + k + k^2 + \ldots + k^{h-1} = \sum_{i=0}^{h-1} k^i = \frac{k^h - 1}{k-1} \]
- A complete binary tree has $2^h - 1$ internal nodes.
- A complete binary tree has $2^{(h + 1)} - 1$ nodes.
Binary tree representation as (doubly) linked lists

(see Section 11.4)

Node in T represented

by object with fields:

\[
\begin{align*}
\text{key} \\
p : \text{parent}(\text{optional}) \\
\text{left} : \text{left child} \\
\text{right} : \text{right child}
\end{align*}
\]
Binary Tree Traversals

- When we visit each node in the tree exactly once, we say we have **Traversed** the tree.
- A full traversal produces a linear order of the information in a tree.
- There are several ways to traverse a tree.
 1. **Preorder**: visit a node, then traverse its left subtree, and then traverse its right subtree.
 2. **Inorder**: traverse the left subtree, visit the node and then traverse its right subtree
 3. **Postorder**: first traverse the left subtree, traverse the right subtree, and then visit the node.
Assume pointer to root.

Need only simply linked lists,

Inorder-Tree-Walk \((x)\)

IF \(x \neq \text{Nil}\)
 Then Inorder-Tree-Walk\((left(x))\)
 print\((key(x))\)
 Inorder-Tree-Walk\((right(x))\)

Preorder-Tree-Walk \((x)\)

IF \(x \neq \text{Nil}\)
 Then print\((key(x))\)
 Preorder-Tree-Walk\((left(x))\)
 Preorder-Tree-Walk\((right(x))\)

Postorder-Tree-Walk \((x)\)

IF \(x \neq \text{Nil}\)
 Then Postorder-Tree-Walk\((left(x))\)
 Postorder-Tree-Walk\((right(x))\)
 print\((key(x))\)
Binary-tree traversal: example

- **Preorder**: visit a node, then traverse its left subtree, and then traverse its right subtree.
- **Inorder**: traverse the left subtree, visit the node and then traverse its right subtree.
- **Postorder**: first traverse the left subtree, traverse the right subtree.

Preorder: + * * / A B C D E

Inorder: A / B * C * D + E

nfix form of the expression

Postorder: A B / C * D * E +
Binary-search-tree property

Let x be a node in a binary search tree.
If y is a node in the left subtree of x, then $key[y] \leq key[x]$. If y is a node in the right subtree of x, then $key[x] \leq key[y]$.
Inorder traversal

simple recursive algorithm that prints out all the keys in a binary search tree in sorted order, thanks to

binary-search-tree property

Inorder-Tree-Walk \((x) \)
IF \(x \neq \text{Nil} \)
Then Inorder-Tree-Walk(\(left(x) \))
print(\(key(x) \))
Inorder-Tree-Walk(\(right(x) \))