Sorting in Linear Time

Textbook, Chapter 9, Sections 9.2 and 9.3

CSCE310: Data Structures and Algorithms
www.cse.unl.edu/~choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444
\(O(n \lg n)\):

- Mergesort, heapsort: worst-case
- quicksort: average-case

\(\Omega(n \lg n)\):

- Mergesort, heapsort, quicksort

Interesting common property: sorted order is based *only* on comparisons between the input elements

\[\rightarrow \text{Comparison sorts algorithms}\]

We can prove that: (Section 1.1)

any comparison sort algorithm is in \(\Omega(n \lg n)\)
Non-comparison sort algorithms

- Counting sort: assumes something about input $O(n)$, stable
- Radix sort, $\Theta(dn + kd)$
 When d constant, $k = O(n) \Rightarrow$ linear time
- Bucket sort: assumes something about input $O(n)$
Counting sort

Assumes that each of the \(n \) input element is an integer in the range of 1 to \(k \)

When \(k = O(n) \), counting sort is linear

Principle

- Determine for each input element \(x \), the number of elements less than \(x \)
- Every element \(x \) can be placed directly in its position in output array

Example

If \(\exists 17 \) elements less than \(x \), \(x \) must be in position 18

Slight modification for same value cases
Counting sort

Input: Array $A[1 \ldots n]$, $\text{length}[A] = n$

Output: Array $B[1 \ldots n]$

Temporary working storage: Array $C[1 \ldots 2]$

Counting-Sort(A, B, k)

1. for $i \leftarrow 1$ to k
2. do $C[i] \leftarrow 0$
3. for $j \leftarrow 1$ to $\text{length}[A]$
4. do $C[A[j]] \leftarrow C[A[j]] + 1$
5. ▷ $C[i]$ now contains the number of elements equal to i.
6. for $i \leftarrow 2$ to k
7. do $C[i] \leftarrow C[i] + C[i - 1]$
8. ▷ $C[i]$ now contains the number of elements less than or equal to i.
9. for $j \leftarrow \text{length}[A]$ downto 1
Counting sort

\textsc{Counting-Sort}(A, B, k)

\begin{algorithmic}
\State \textbf{for} $i \leftarrow 1$ \textbf{to} k
\State \hspace{1em} \textbf{do} $C[i] \leftarrow 0$
\State \textbf{for} $j \leftarrow 1$ \textbf{to} \text{length}[A]
\State \hspace{1em} \textbf{do} $C[A[j]] \leftarrow C[A[j]] + 1$
\State $\triangleright C[i]$ now contains the number of elements equal to i.
\State \textbf{for} $i \leftarrow 2$ \textbf{to} k
\State \hspace{1em} \textbf{do} $C[i] \leftarrow C[i] + C[i - 1]$
\State $\triangleright C[i]$ now contains the number of elements less than or equal to i.
\State \textbf{for} $j \leftarrow \text{length}[A]$ \textbf{downto} 1
\State \hspace{1em} \textbf{do} $B[C[A[j]]] \leftarrow A[j]$
\State \hspace{1em} $C[A[j]] \leftarrow C[A[j]] - 1$
\end{algorithmic}

Lines 1–2: initialization

Lines 3–4: inspect each element, get values of $C[i]$

$C[i]$: number of elements equal to i

Lines 6 7: number of elements $\leq i$ (a running sum of C)

Lines 9 11: $A[j]$ is place in correct position in B
Counting sort

COUNTING-SORT(A, B, k)

1. for $i ← 1$ to k
2. do $C[i] ← 0$
3. for $j ← 1$ to length[A]
4. do $C[A[j]] ← C[A[j]] + 1$
5. ▷ $C[i]$ now contains the number of elements equal to i.
6. for $i ← 2$ to k
7. do $C[i] ← C[i] + C[i - 1]$
8. ▷ $C[i]$ now contains the number of elements less than or equal to i.
9. for $j ← \text{length}[A]$ downto 1

Lines 9–11: $A[j]$ is place in correct position in B
correct final position for $A[j]$ is $C[A[j]]$
Since some x may not be different,
need to decrement $C[A[j]]$ when placing an $A[j]$ into B
Counting sort

\begin{algorithm}
\textbf{Counting-Sort}(A, B, k)
\begin{algorithmic}
 \State \textbf{for} $i \leftarrow 1$ \textbf{to} k
 \State \hspace{1em} \textbf{do} $C[i] \leftarrow 0$
 \State \textbf{for} $j \leftarrow 1$ \textbf{to} \texttt{length}[A]
 \State \hspace{1em} \textbf{do} $C[A[j]] \leftarrow C[A[j]] + 1$
 \State $\triangleright C[i]$ now contains the number of elements equal to i.
 \State \textbf{for} $i \leftarrow 2$ \textbf{to} k
 \State \hspace{1em} \textbf{do} $C[i] \leftarrow C[i] + C[i - 1]$
 \State $\triangleright C[i]$ now contains the number of elements less than or equal to i.
 \State \textbf{for} $j \leftarrow \texttt{length}[A]$ \textbf{downto} 1
 \State \hspace{1em} \textbf{do} $B[C[A[j]]] \leftarrow A[j]$
 \State $C[A[j]] \leftarrow C[A[j]] - 1$
\end{algorithmic}
\end{algorithm}

Lines 1–2: $O(k)$

Lines 3–4: $O(n)$

Lines 6 7: $O(k)$

Lines 9–11: $O(n)$

Counting sort: $O(k + n)$

Usually, used with $k = O(n)$, this in $O(n)$
Counting sort: stable

Numbers with the same value appear in B in same order as in A

Important in presence of satellite data

Exercise: 9.2-1
Try again in 9.2-3
Radix sort

Given numbers of d-digit, Radix-sort:

1. Starts with the least significant digit first
2. Sorts the numbers according this digit **using a stable sorting algorithm**
3. Moves to the next least-significant digit
4. Repeats from 2, until last digit d
5. .. and the numbers are sorted!

Digit sorting must be stable
Radix sort is stable

Example: sort records by dates (years, months, and days)
General use: sort records keyed by multiple fields
Input: A, array of n elements, each of d digits: 1 lowest-order digit, d highest-order digit

For $i ← 1$ **to** d

do use a stable sort to sort array A on digit i

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>329</td>
<td>720</td>
<td>720</td>
<td>329</td>
</tr>
<tr>
<td>457</td>
<td>355</td>
<td>329</td>
<td>355</td>
</tr>
<tr>
<td>657</td>
<td>436</td>
<td>436</td>
<td>436</td>
</tr>
<tr>
<td>839</td>
<td>457</td>
<td>839</td>
<td>457</td>
</tr>
<tr>
<td>436</td>
<td>657</td>
<td>355</td>
<td>657</td>
</tr>
<tr>
<td>720</td>
<td>329</td>
<td>457</td>
<td>720</td>
</tr>
<tr>
<td>355</td>
<td>839</td>
<td>657</td>
<td>839</td>
</tr>
</tbody>
</table>

Correctness: proof by induction on column being sorted

Running time: depends on intermediate sorting algorithm

Exercise: 9.3-1
Running time: of Radixsort

When each digit is in the range of 1 to \(k \) (\(k \) not too large)
 Use Counting sort
 Each pass over \(n \) \(d \)-digit numbers is \(\Theta(n + k) \)
\(d \)-passes: \(\Theta(dn + kd) \)

 When \(d \) constant and \(k = O(n) \), Radixsort is linear!!

Unlike Quicksort and Insertionsort,
Countingsort does not sort in place

When space is at stake, use Quicksort