7. Basic processor design – Sequential logic

Prof. Valeria Bertacco & Prof. Scott Mahlke

EECS Department
University of Michigan in Ann Arbor, USA

© V. Bertacco & S. Mahlke, 2007
The material in this presentation cannot be copied in any form without our written permission
Announcements

- New professor today – Scott Mahlke (mall key)
 - For the next 3 classes, then Valeria for Exam 1 review and Exam 1, then me for the next 1 and a half months

- Homework 2 – Due today (Jan 30)
 - Homework 3 available on course website

- Project 1 – Due Friday (Feb 2)

- Exam 1
 - Review session – In class, Thursday Feb 8
 - Exam itself – In class, Tuesday Feb 13
 - Open book / open notes → Covers through finite state machines

- Regular discussion sections this week – cancelled
 - GSIs will have extra office hours during discussion slots in the Media Union
Lecture schedule

1. Combinational Logic:
 • Basics of electronics; logic gates, muxes, decoders

2. Sequential Logic:
 • clocks and data storage

3. ALU design
 • Building an adding circuit

4. State Machines
 • Building a simple processor
Levels of abstraction

- Quantum level, solid state physics
- Conductors, Insulators, Semiconductors.
- Doping silicon to make diodes and transistors.
- Building simple gates, boolean logic, and truth tables
- Combinational logic: muxes, decoders
- Clocks
- Sequential logic: latches, memory
- State machines
- Processor Control: Machine instructions
- Computer Architecture: Defining a set of instructions
Let’s look at the following circuit

What is the value of Q if \(\overline{R} \) is 1 and \(\overline{S} \) is 0?

\[
\begin{array}{cccc}
\overline{R} = 1 & \overline{Q} = 0 & Q = 1 & \overline{Q} = 0 \\
\overline{S} = 0 & Q = 1 & & \\
\end{array}
\]
Building the Truth Table

What is the value of Q if \(\bar{R} \) is 0 and \(\bar{S} \) is 1?

\[
\begin{array}{cccccc}
\bar{S} & \bar{R} & Q & \bar{Q} \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\end{array}
\]
For a Basic Memory Cell

What is the value of Q if \(\overline{R} \) is 1 and \(\overline{S} \) is 1?

As long as \(R \) and \(S \) remain 1 then the value \(Q \) (and \(\overline{Q} \)) will remain unchanged. This value is stored in this circuit. **This is a basic memory cell.**
With unstable inputs 0,0

What is the value of Q if \bar{R} is 0 and \bar{S} is 0?

<table>
<thead>
<tr>
<th>\bar{S}</th>
<th>R</th>
<th>Q</th>
<th>\bar{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>undef</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Q</td>
<td>\bar{Q}</td>
</tr>
</tbody>
</table>
Transparent D Latch

Gating signal

<table>
<thead>
<tr>
<th>D</th>
<th>G</th>
<th>Q</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Set state is retained

Next state is set
Adding a clock to the mix

- We can design more interesting circuits if we have a clock signal.
- The use of a clock enables a sequential circuit to **predictably** change state (and store information).
- A clock signal alternates between 0 and 1 states at a fixed frequency (e.g. 100MHz)
- What should the clock frequency be?
Clocks

- Clock signal
 - Periodic pulse
 - Generated using oscillating crystal or ring oscillator
 - Distributed throughout chip using clock distribution net

- With clock signals we can create a new class of circuits called **sequential**
 - Output determined by inputs & previous state
Edge Triggered D Flip-flop

Latching starts

Data “sealed” inside flip-flop

Data should remain valid and stable during latching!
Q?

Data

Clock

Q
Why edge-triggered flip-flops?

In edge-triggered flip-flops, the latching edge provides convenient abstraction of “instantaneous” change of state.
Tri-state Logic

- The output of a gate can be any of three different states: one, zero or not connected
 - Need to disconnect the circuit. How?

Bus Driver

Implemented as a single transistor
A Static Memory Cell
A 4-Bit Register
Addressing Memory Arrays

One of the 2^4 enable lines is turned ON

Replaces 16x1 MUX

16 X 1 BIT MEMORY
A Scheme with Fewer Components

16 X 1 BIT MEMORY
Putting it in a package

18-bit X 2M MEMORY (36 MBits)
Other Memories

- **Static RAM**
 - Built from sequential circuits
 - Takes 4-6 transistors to store 1 bit
 - Fast access (< 1 ns access possible)

- **Dynamic RAM**
 - Built using a single transistor and a capacitor
 - 1’s must be refreshed often to retain value
 - Slower access than static RAM
 - Much more dense layout than static RAM

- **ROM, PROM, Flash memory, etc.** Later